โ† Back to Home
Computer Vision

Enhancing Lightweight IRSR Models via Knowledge Distillation

Funzin ยท ICTC 2025 Oral Session 2025.04 - 2025.07
PyTorch Knowledge Distillation IR Image Processing Super Resolution

๐Ÿ† ์ฃผ์š” ์„ฑ๊ณผ

  • IRSR ๋ถ„์•ผ ์ตœ์ดˆ Knowledge Distillation ์ ์šฉ: IR Image Super Resolution ๋ถ„์•ผ์— Knowledge Distillation ๊ธฐ๋ฒ•์„ ์ตœ์ดˆ๋กœ ๋„์ž…ํ•œ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์•ˆ
  • ์„ฑ๋Šฅ ํ–ฅ์ƒ: ์ผ๋ฐ˜์ ์ธ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ ๋Œ€๋น„ 4%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๋‹ฌ์„ฑ
  • ํ•™์ˆ ์  ์„ฑ๊ณผ: ICTC 2025 ํˆฌ๊ณ  ๋ฐ Oral Session ๋ฐœํ‘œ

๐Ÿ“ GitHub Repository โ†’

IRSR Knowledge Distillation Framework

ํ”„๋กœ์ ํŠธ ๊ฐœ์š”

IR(์ ์™ธ์„ ) Image Super Resolution ๋ถ„์•ผ์— Knowledge Distillation ๊ธฐ๋ฒ•์„ ์ตœ์ดˆ๋กœ ๋„์ž…ํ•œ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค. ์—ด์˜์ƒ ์ด๋ฏธ์ง€ ์ดˆํ•ด์ƒ๋„ ๋ชจ๋ธ(IRSR)์— Knowledge Distillation์„ ์ ์šฉํ•˜์—ฌ ๊ฒฝ๋Ÿ‰ํ™”๋œ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ICTC 2025 ํ•™ํšŒ์— ํˆฌ๊ณ ๋˜์–ด Oral Session์—์„œ ๋ฐœํ‘œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์ ์™ธ์„  ์ด๋ฏธ์ง€๋Š” ๊ฐ€์‹œ๊ด‘์„  ์ด๋ฏธ์ง€์™€ ๋‹ค๋ฅธ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ, ํŠนํžˆ ์—ด ์ •๋ณด์™€ ๊ตฌ์กฐ์  ํŠน์ง•์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ IR ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ Knowledge Distillation ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.

์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ

IR Image Super Resolution์€ ๋ฐฉ์‚ฐ, ๋ณด์•ˆ, ์˜๋ฃŒ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ์„ฑ๋Šฅ ๋ชจ๋ธ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋งŽ์•„ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก ์ด ์–ด๋ ต๊ณ , ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ์€ ์„ฑ๋Šฅ์ด ๋‚ฎ์€ ๋ฌธ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. Knowledge Distillation์€ Teacher ๋ชจ๋ธ์˜ ์ง€์‹์„ Student ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜์—ฌ ๊ฒฝ๋Ÿ‰ํ™”์™€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

๊ธฐ์กด Knowledge Distillation ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๊ฐ€์‹œ๊ด‘์„  ์ด๋ฏธ์ง€์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์–ด, IR ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ์—ฌ์‚ฌํ•ญ

  • IR ํŠนํ™” Loss Function ์„ค๊ณ„: IR ์ด๋ฏธ์ง€์— ํŠนํ™”๋œ Sobel Transform ๊ธฐ๋ฐ˜ Structural Loss์™€ Spectral Loss ๊ฐœ๋ฐœ
  • Teacher-Student ๊ตฌ์กฐ ์ตœ์ ํ™”: Knowledge Distillation์„ ํ†ตํ•œ ๊ฒฝ๋Ÿ‰ ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ
  • ์‹คํ—˜ ๊ฒ€์ฆ: ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ํ†ตํ•œ ๋ฐฉ๋ฒ•๋ก ์˜ ํšจ๊ณผ์„ฑ ์ž…์ฆ

๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•๋ก 

Knowledge Distillation ํ”„๋ ˆ์ž„์›Œํฌ

Teacher-Student ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€๊ทœ๋ชจ Teacher ๋ชจ๋ธ์˜ ์ง€์‹์„ ๊ฒฝ๋Ÿ‰ Student ๋ชจ๋ธ์— ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค. Teacher ๋ชจ๋ธ์€ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ ์ถ”๋ก  ์†๋„๊ฐ€ ๋А๋ฆฌ๊ณ , Student ๋ชจ๋ธ์€ ๊ฒฝ๋Ÿ‰์ด์ง€๋งŒ ์„ฑ๋Šฅ์ด ๋‚ฎ์Šต๋‹ˆ๋‹ค. Knowledge Distillation์„ ํ†ตํ•ด Student ๋ชจ๋ธ์ด Teacher ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๊ทผ์ ‘ํ•˜๋„๋ก ํ•™์Šต์‹œํ‚ต๋‹ˆ๋‹ค.

1. Structural Loss (Sobel Loss)

IR ์ด๋ฏธ์ง€์˜ ๊ตฌ์กฐ์  ์ •๋ณด๋ฅผ ๋ณด์กดํ•˜๊ธฐ ์œ„ํ•ด Sobel Transform์„ ํ™œ์šฉํ•œ Edge Loss๋ฅผ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค. Sobel ์—ฐ์‚ฐ์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์˜ ๊ฒฝ๊ณ„์™€ ๊ตฌ์กฐ์  ํŠน์ง•์„ ์ถ”์ถœํ•˜๊ณ , Teacher์™€ Student ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ๊ฐ„ ๊ตฌ์กฐ์  ์ฐจ์ด๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.

2. Spectral Loss

IR ์ด๋ฏธ์ง€๋Š” ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ํŠน์ • ํŒจํ„ด์„ ๋ณด์ž…๋‹ˆ๋‹ค. FFT(Fast Fourier Transform)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ์˜ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•˜๋Š” Spectral Loss๋ฅผ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด IR ์ด๋ฏธ์ง€์˜ ์ฃผํŒŒ์ˆ˜ ํŠน์„ฑ์„ ๋ณด์กดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

3. ํ†ตํ•ฉ Loss Function

๊ธฐ์กด์˜ Pixel Loss, Perceptual Loss์™€ ํ•จ๊ป˜ ์ƒˆ๋กœ ๊ฐœ๋ฐœํ•œ Structural Loss์™€ Spectral Loss๋ฅผ ์กฐํ•ฉํ•˜์—ฌ IR ์ด๋ฏธ์ง€์— ์ตœ์ ํ™”๋œ ํ†ตํ•ฉ Loss Function์„ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค.

์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ๊ธฐ์กด์˜ ์ผ๋ฐ˜์ ์ธ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ ๋Œ€๋น„ PSNR ๊ธฐ์ค€ 4%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ๋Ÿ‰ํ™”๋œ Student ๋ชจ๋ธ์—์„œ๋„ Teacher ๋ชจ๋ธ์— ๊ทผ์ ‘ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, ์ถ”๋ก  ์†๋„๋Š” ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

ํŠนํžˆ Sobel Loss์™€ Spectral Loss์˜ ์กฐํ•ฉ์ด IR ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ์„ ์ž˜ ๋ณด์กดํ•˜๋ฉด์„œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ•จ์„ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.

IRSR ์‹คํ—˜ ๊ฒฐ๊ณผ ํ…Œ์ด๋ธ” IRSR ์‹คํ—˜ ๊ฒฐ๊ณผ ๊ทธ๋ž˜ํ”„

ํ•™์ˆ ์  ์„ฑ๊ณผ

๋ณธ ์—ฐ๊ตฌ๋Š” ICTC 2025 (International Conference on ICT Convergence)์— ํˆฌ๊ณ ๋˜์–ด Oral Session์—์„œ ๋ฐœํ‘œ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. IR Image Super Resolution ๋ถ„์•ผ์— Knowledge Distillation์„ ์ ์šฉํ•œ ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋กœ์„œ ํ•™์ˆ ์  ๊ฐ€์น˜๋ฅผ ์ธ์ •๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.

๋ฐฐ์šด ์ 

  • Knowledge Distillation์˜ ์ด๋ก ๊ณผ ์‹ค๋ฌด ์ ์šฉ ๋ฐฉ๋ฒ•
  • IR ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ๊ณผ ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•
  • ๋„๋ฉ”์ธ ํŠนํ™” Loss Function ์„ค๊ณ„ ๊ฒฝํ—˜
  • ํ•™์ˆ  ๋…ผ๋ฌธ ์ž‘์„ฑ ๋ฐ ํ•™ํšŒ ๋ฐœํ‘œ ๊ฒฝํ—˜
  • Super Resolution ๋ถ„์•ผ์˜ ์ตœ์‹  ์—ฐ๊ตฌ ๋™ํ–ฅ